Quick links: help overview · quick reference · user manual toc · reference manual toc
repeat.txt    Nvim


                  VIM REFERENCE MANUAL    by Bram Moolenaar


Repeating commands, Vim scripts and debugging                   repeating

Chapter 26 of the user manual introduces repeating usr_26.txt.

                                      Type gO to see the table of contents.

==============================================================================
Single repeats                                          single-repeat

                                                        .
.                       Repeat last change, with count replaced with [count].
                        Also repeat a yank command, when the 'y' flag is
                        included in 'cpoptions'.  Does not repeat a
                        command-line command.

Simple changes can be repeated with the "." command.  Without a count, the
count of the last change is used.  If you enter a count, it will replace the
last one.  v:count and v:count1 will be set.

If the last change included a specification of a numbered register, the
register number will be incremented.  See redo-register for an example how
to use this.

Note that when repeating a command that used a Visual selection, the same SIZE
of area is used, see visual-repeat.

                                                        @:
@:                      Repeat last command-line [count] times.


==============================================================================
Multiple repeats                                        multi-repeat

                                                :g :global E148
:[range]g[lobal]/{pattern}/[cmd]
                        Execute the Ex command [cmd] (default ":p") on the
                        lines within [range] where {pattern} matches.

:[range]g[lobal]!/{pattern}/[cmd]
                        Execute the Ex command [cmd] (default ":p") on the
                        lines within [range] where {pattern} does NOT match.

                                                        :v :vglobal
:[range]v[global]/{pattern}/[cmd]
                        Same as :g!.

Example: 
        :g/^Obsolete/d _
Using the underscore after :d avoids clobbering registers or the clipboard.
This also makes it faster.

Instead of the '/' which surrounds the {pattern}, you can use any other
single byte character, but not an alphabetic character, '\', '"' or '|'.
This is useful if you want to include a '/' in the search pattern or
replacement string.

For the definition of a pattern, see pattern.

NOTE [cmd] may contain a range; see collapse and edit-paragraph-join for
examples.

The global commands work by first scanning through the [range] lines and
marking each line where a match occurs (for a multi-line pattern, only the
start of the match matters).
In a second scan the [cmd] is executed for each marked line, as if the cursor
was in that line.  For ":v" and ":g!" the command is executed for each not
marked line.  If a line is deleted its mark disappears.
The default for [range] is the whole buffer (1,$).  Use "CTRL-C" to interrupt
the command.  If an error message is given for a line, the command for that
line is aborted and the global command continues with the next marked or
unmarked line.
                                                                E147
When the command is used recursively, it only works on one line.  Giving a
range is then not allowed. This is useful to find all lines that match a
pattern and do not match another pattern: 
        :g/found/v/notfound/{cmd}
This first finds all lines containing "found", but only executes {cmd} when
there is no match for "notfound".

Any Ex command can be used, see ex-cmd-index.  To execute a Normal mode
command, you can use the :normal command: 
        :g/pat/normal {commands}
Make sure that {commands} ends with a whole command, otherwise Vim will wait
for you to type the rest of the command for each match.  The screen will not
have been updated, so you don't know what you are doing.  See :normal.

The undo/redo command will undo/redo the whole global command at once.
The previous context mark will only be set once (with "''" you go back to
where the cursor was before the global command).

The global command sets both the last used search pattern and the last used
substitute pattern (this is vi compatible).  This makes it easy to globally
replace a string:
        :g/pat/s//PAT/g
This replaces all occurrences of "pat" with "PAT".  The same can be done with:
        :%s/pat/PAT/g
Which is two characters shorter!

When using "global" in Ex mode, a special case is using ":visual" as a
command.  This will move to a matching line, go to Normal mode to let you
execute commands there until you use gQ to return to Ex mode.  This will be
repeated for each matching line.  While doing this you cannot use ":global".
To abort this type CTRL-C twice.

==============================================================================
Complex repeats                                         complex-repeat

                                                        q recording
q{0-9a-zA-Z"}           Record typed characters into register {0-9a-zA-Z"}
                        (uppercase to append).  The 'q' command is disabled
                        while executing a register, and it doesn't work inside
                        a mapping and :normal.

                        Note: If the register being used for recording is also
                        used for y and p the result is most likely not
                        what is expected, because the put will paste the
                        recorded macro and the yank will overwrite the
                        recorded macro.

                        Note: The recording happens while you type, replaying
                        the register happens as if the keys come from a
                        mapping.  This matters, for example, for undo, which
                        only syncs when commands were typed.

q                       Stops recording.
                        Implementation note: The 'q' that stops recording is
                        not stored in the register, unless it was the result
                        of a mapping

                                                        @
@{0-9a-z".=*+}          Execute the contents of register {0-9a-z".=*+} [count]
                        times.  Note that register '%' (name of the current
                        file) and '#' (name of the alternate file) cannot be
                        used.
                        The register is executed like a mapping, that means
                        that the difference between 'wildchar' and 'wildcharm'
                        applies, and undo might not be synced in the same way.
                        For "@=" you are prompted to enter an expression.  The
                        result of the expression is then executed.
                        See also @:.

                                                        @@ E748
@@                      Repeat the previous @{0-9a-z":*} [count] times.

                                                        Q
Q                       Repeat the last recorded register [count] times.
                        See reg_recorded().

                                                        :@
:[addr]@{0-9a-z".=*+}   Execute the contents of register {0-9a-z".=*+} as an Ex
                        command.  First set cursor at line [addr] (default is
                        current line).  When the last line in the register does
                        not have a <CR> it will be added automatically when
                        the 'e' flag is present in 'cpoptions'.
                        For ":@=" the last used expression is used.  The
                        result of evaluating the expression is executed as an
                        Ex command.
                        Mappings are not recognized in these commands.
                        When the line-continuation character (\) is present
                        at the beginning of a line in a linewise register,
                        then it is combined with the previous line. This is
                        useful for yanking and executing parts of a Vim
                        script.

                                                        :@:
:[addr]@:               Repeat last command-line.  First set cursor at line
                        [addr] (default is current line).

:[addr]@                                                        :@@
:[addr]@@               Repeat the previous :@{register}.  First set cursor at
                        line [addr] (default is current line).

==============================================================================
Using Vim scripts                                       using-scripts

For writing a Vim script, see chapter 41 of the user manual usr_41.txt.

                                        :so :source load-vim-script
:[range]so[urce] [file] Runs Ex commands or Lua code (".lua" files) from
                        [file], or current buffer if no [file].
                        Triggers the SourcePre autocommand.
                                                        :source!
:[range]so[urce]! {file}
                        Runs Normal-mode commands from {file}. When used
                        after :global, :argdo, :windo, :bufdo, in
                        a loop or when another command follows the display
                        won't be updated while executing the commands.

                                                        :ru :runtime
:ru[ntime][!] [where] {file} ..
                        Sources Ex commands or Lua code (".lua" files) read
                        from {file} (a relative path) in each directory given
                        by 'runtimepath' and/or 'packpath'.
                        Ignores non-existing files.

                        Example: 
                                :runtime syntax/c.vim
                                :runtime syntax/c.lua

                       There can be multiple space-separated {file}
                        arguments. Each {file} is searched for in the first
                        directory from 'runtimepath', then in the second
                        directory, etc.

                        When [!] is included, all found files are sourced.
                        Else only the first found file is sourced.

                        When [where] is omitted, first 'runtimepath' is
                        searched, then directories under "start" in 'packpath'
                        are searched.
                        Other values:
                                START   search only under "start" in 'packpath'
                                OPT     search only under "opt" in 'packpath'
                                PACK    search under "start" and "opt" in
                                        'packpath'
                                ALL     first use 'runtimepath', then search
                                        under "start" and "opt" in 'packpath'

                        When {file} contains wildcards it is expanded to all
                        matching files.  Example: 
                                :runtime! plugin/**/*.vim
                       This is what Vim uses to load the plugin files when
                        starting up.  This similar command: 
                                :runtime plugin/**/*.vim
                       would source the first file only.

                        When 'verbose' is one or higher, there is a message
                        when no file could be found.
                        When 'verbose' is two or higher, there is a message
                        about each searched file.

                                                        :pa :packadd E919
:pa[ckadd][!] {name}    Search for an optional plugin directory in 'packpath'
                        and source any plugin files found.  The directory must
                        match:
                                pack/*/opt/{name} 
                        The directory is added to 'runtimepath' if it wasn't
                        there yet.
                        If the directory pack/*/opt/{name}/after exists it is
                        added at the end of 'runtimepath'.

                        If loading packages from "pack/*/start" was skipped,
                        then this directory is searched first:
                                pack/*/start/{name} 

                        Note that {name} is the directory name, not the name
                        of the .vim file.  All the files matching the pattern
                                pack/*/opt/{name}/plugin/**/*.vim 
                        and
                                pack/*/opt/{name}/plugin/**/*.lua 
                        will be sourced.  This allows for using subdirectories
                        below "plugin", just like with plugins in
                        'runtimepath'.

                        If the filetype detection was already enabled (this
                        is usually done with a "syntax enable" or "filetype
                        on" command in your init.vim, or automatically during
                        initialization), and the package was found in
                        "pack/*/opt/{name}", this command will also look
                        for "{name}/ftdetect/*.vim" files.

                        When the optional ! is added no plugin files or
                        ftdetect scripts are loaded, only the matching
                        directories are added to 'runtimepath'.  This is
                        useful in your init.vim.  The plugins will then be
                        loaded during initialization, see load-plugins (note
                        that the loading order will be reversed, because each
                        directory is inserted before others). In this case, the
                        ftdetect scripts will be loaded during initialization,
                        before the load-plugins step.

                        Also see pack-add.

                                                :packl :packloadall
:packl[oadall][!]       Load all packages in the "start" directory under each
                        entry in 'packpath'.

                        First all the directories found are added to
                        'runtimepath', then the plugins found in the
                        directories are sourced.  This allows for a plugin to
                        depend on something of another plugin, e.g. an
                        "autoload" directory.  See packload-two-steps for
                        how this can be useful.

                        This is normally done automatically during startup,
                        after loading your .vimrc file.  With this command it
                        can be done earlier.

                        Packages will be loaded only once.  Using
                        :packloadall a second time will have no effect.
                        When the optional ! is added this command will load
                        packages even when done before.

                        Note that when using :packloadall in the vimrc
                        file, the 'runtimepath' option is updated, and later
                        all plugins in 'runtimepath' will be loaded, which
                        means they are loaded again.  Plugins are expected to
                        handle that.

                        An error only causes sourcing the script where it
                        happens to be aborted, further plugins will be loaded.
                        See packages.

:scripte[ncoding] [encoding]            :scripte :scriptencoding E167
                        Specify the character encoding used in the script.
                        The following lines will be converted from [encoding]
                        to the value of the 'encoding' option, if they are
                        different.  Examples: 
                                scriptencoding iso-8859-5
                                scriptencoding cp932

                        When [encoding] is empty, no conversion is done.  This
                        can be used to restrict conversion to a sequence of
                        lines: 
                                scriptencoding euc-jp
                                ... lines to be converted ...
                                scriptencoding
                                ... not converted ...

                       When conversion isn't supported by the system, there
                        is no error message and no conversion is done.  When a
                        line can't be converted there is no error and the
                        original line is kept.

                        Don't use "ucs-2" or "ucs-4", scripts cannot be in
                        these encodings (they would contain NUL bytes).
                        When a sourced script starts with a BOM (Byte Order
                        Mark) in utf-8 format Vim will recognize it, no need
                        to use ":scriptencoding utf-8" then.

                                                :scr :scriptnames
:scr[iptnames]          List all sourced script names, in the order they were
                        first sourced.  The number is used for the script ID
                        <SID>.

:scr[iptnames][!] {scriptId}                    :script
                        Edit script {scriptId}.  Although ":scriptnames name"
                        works, using ":script name" is recommended.
                        When the current buffer can't be abandoned and the !
                        is not present, the command fails.

                                                :fini :finish E168
:fini[sh]               Stop sourcing a script.  Can only be used in a Vim
                        script file.  This is a quick way to skip the rest of
                        the file.  If it is used after a :try but before the
                        matching :finally (if present), the commands
                        following the ":finally" up to the matching :endtry
                        are executed first.  This process applies to all
                        nested ":try"s in the script.  The outermost ":endtry"
                        then stops sourcing the script.

All commands and command sequences can be repeated by putting them in a named
register and then executing it.  There are two ways to get the commands in the
register:
- Use the record command "q".  You type the commands once, and while they are
  being executed they are stored in a register.  Easy, because you can see
  what you are doing.  If you make a mistake, "p"ut the register into the
  file, edit the command sequence, and then delete it into the register
  again.  You can continue recording by appending to the register (use an
  uppercase letter).
- Delete or yank the command sequence into the register.

Often used command sequences can be put under a function key with the ':map'
command.

An alternative is to put the commands in a file, and execute them with the
':source!' command.  Useful for long command sequences.  Can be combined with
the ':map' command to put complicated commands under a function key.

The ':source' command reads Ex commands from a file line by line.  You will
have to type any needed keyboard input.  The ':source!' command reads from a
script file character by character, interpreting each character as if you
typed it.

Example: When you give the ":!ls" command you get the hit-enter prompt.  If
you ':source' a file with the line "!ls" in it, you will have to type the
<Enter> yourself.  But if you ':source!' a file with the line ":!ls" in it,
the next characters from that file are read until a <CR> is found.  You will
not have to type <CR> yourself, unless ":!ls" was the last line in the file.

It is possible to put ':source[!]' commands in the script file, so you can
make a top-down hierarchy of script files.  The ':source' command can be
nested as deep as the number of files that can be opened at one time (about
15).  The ':source!' command can be nested up to 15 levels deep.

You can use the "<sfile>" string (literally, this is not a special key) inside
of the sourced file, in places where a file name is expected.  It will be
replaced by the file name of the sourced file.  For example, if you have a
"other.vimrc" file in the same directory as your init.vim file, you can
source it from your init.vim file with this command: 
        :source <sfile>:h/other.vimrc

In script files terminal-dependent key codes are represented by
terminal-independent two character codes.  This means that they can be used
in the same way on different kinds of terminals.  The first character of a
key code is 0x80 or 128, shown on the screen as "~@".  The second one can be
found in the list key-notation.  Any of these codes can also be entered
with CTRL-V followed by the three digit decimal code.

                                                        :source_crnl W15
Windows: Files that are read with ":source" normally have <CR><NL> <EOL>s.
These always work.  If you are using a file with <NL> <EOL>s (for example, a
file made on Unix), this will be recognized if 'fileformats' is not empty and
the first line does not end in a <CR>.  This fails if the first line has
something like ":map <F1> :help^M", where "^M" is a <CR>.  If the first line
ends in a <CR>, but following ones don't, you will get an error message,
because the <CR> from the first lines will be lost.

On other systems, Vim expects ":source"ed files to end in a <NL>.  These
always work.  If you are using a file with <CR><NL> <EOL>s (for example, a
file made on MS-Windows), all lines will have a trailing <CR>.  This may cause
problems for some commands (e.g., mappings).  There is no automatic <EOL>
detection, because it's common to start with a line that defines a mapping
that ends in a <CR>, which will confuse the automaton.

                                                        line-continuation
Long lines in a ":source"d Ex command script file can be split by inserting
a line continuation symbol "\" (backslash) at the start of the next line.
There can be white space before the backslash, which is ignored.

Example: the lines 
        :set comments=sr:/*,mb:*,el:*/,
                     \://,
                     \b:#,
                     \:%,
                     \n:>,
                     \fb:-
are interpreted as if they were given in one line:
        :set comments=sr:/*,mb:*,el:*/,://,b:#,:%,n:>,fb:-

All leading whitespace characters in the line before a backslash are ignored.
Note however that trailing whitespace in the line before it cannot be
inserted freely; it depends on the position where a command is split up
whether additional whitespace is allowed or not.

When a space is required it's best to put it right after the backslash.  A
space at the end of a line is hard to see and may be accidentally deleted. 
        :syn match Comment
                \ "very long regexp"
                \ keepend

There is a problem with the ":append" and ":insert" commands: 
   :1append
   \asdf
   .
The backslash is seen as a line-continuation symbol, thus this results in the
command: 
   :1appendasdf
   .
To avoid this, add the 'C' flag to the 'cpoptions' option: 
   :set cpo+=C
   :1append
   \asdf
   .
   :set cpo-=C

Note that when the commands are inside a function, you need to add the 'C'
flag when defining the function, it is not relevant when executing it. 
   :set cpo+=C
   :function Foo()
   :1append
   \asdf
   .
   :endfunction
   :set cpo-=C

                                        line-continuation-comment
To add a comment in between the lines start with `'"\ '`.  Notice the space
after the backslash.  Example: 
        let array = [
                "\ first entry comment
                \ 'first',
                "\ second entry comment
                \ 'second',
                \ ]

Rationale:
        Most programs work with a trailing backslash to indicate line
        continuation.  Using this in Vim would cause incompatibility with Vi.
        For example for this Vi mapping: 
                :map xx  asdf\
       Therefore the unusual leading backslash is used.

        Starting a comment in a continuation line results in all following
        continuation lines to be part of the comment.  Since it was like this
        for a long time, when making it possible to add a comment halfway a
        sequence of continuation lines, it was not possible to use \", since
        that was a valid continuation line.  Using `'"\ '` comes closest, even
        though it may look a bit weird.  Requiring the space after the
        backslash is to make it very unlikely this is a normal comment line.

==============================================================================
Using Vim packages                                      packages

A Vim "package" is a directory that contains plugins.  Compared to normal
plugins, a package can...
- be downloaded as an archive and unpacked in its own directory, so the files
  are not mixed with files of other plugins.
- be a git, mercurial, etc. repository, thus easy to update.
- contain multiple plugins that depend on each other.
- contain plugins that are automatically loaded on startup ("start" packages,
  located in "pack/*/start/*") and ones that are only loaded when needed with
  :packadd ("opt" packages, located in "pack/*/opt/*").

                                                        runtime-search-path
Nvim searches for :runtime files in:
        1. all paths in 'runtimepath'
        2. all "pack/*/start/*" dirs

Note that the "pack/*/start/*" paths are not explicitly included in
'runtimepath', so they will not be reported by ":set rtp" or "echo &rtp".
Scripts can use nvim_list_runtime_paths() to list all used directories, and
nvim_get_runtime_file() to query for specific files or sub-folders within
the runtime path. Example: 
        " List all runtime dirs and packages with Lua paths.
        :echo nvim_get_runtime_file("lua/", v:true)

Using a package and loading automatically 

Let's assume your Nvim files are in "~/.local/share/nvim/site" and you want to
add a package from a zip archive "/tmp/foopack.zip":
        % mkdir -p ~/.local/share/nvim/site/pack/foo
        % cd ~/.local/share/nvim/site/pack/foo
        % unzip /tmp/foopack.zip

The directory name "foo" is arbitrary, you can pick anything you like.

You would now have these files under ~/.local/share/nvim/site:
        pack/foo/README.txt
        pack/foo/start/foobar/plugin/foo.vim
        pack/foo/start/foobar/syntax/some.vim
        pack/foo/opt/foodebug/plugin/debugger.vim

On startup after processing your config, Nvim scans all directories in
'packpath' for plugins in "pack/*/start/*", then loads the plugins.

In the example Nvim will find "pack/foo/start/foobar/plugin/foo.vim" and load
it.

If the "foobar" plugin kicks in and sets the 'filetype' to "some", Nvim will
find the syntax/some.vim file, because its directory is in the runtime search
path.

Nvim will also load ftdetect files, if there are any.

Note that the files under "pack/foo/opt" are not loaded automatically, only the
ones under "pack/foo/start".  See pack-add below for how the "opt" directory
is used.

Loading packages automatically will not happen if loading plugins is disabled,
see load-plugins.

To load packages earlier, so that plugin/ files are sourced:
        :packloadall
This also works when loading plugins is disabled.  The automatic loading will
only happen once.

If the package has an "after" directory, that directory is added to the end of
'runtimepath', so that anything there will be loaded later.


Using a single plugin and loading it automatically 

If you don't have a package but a single plugin, you need to create the extra
directory level:
        % mkdir -p ~/.local/share/nvim/site/pack/foo/start/foobar
        % cd ~/.local/share/nvim/site/pack/foo/start/foobar
        % unzip /tmp/someplugin.zip

You would now have these files:
        pack/foo/start/foobar/plugin/foo.vim
        pack/foo/start/foobar/syntax/some.vim

From here it works like above.


Optional plugins 
                                                        pack-add
To load an optional plugin from a pack use the :packadd command: 
        :packadd foodebug
This searches for "pack/*/opt/foodebug" in 'packpath' and will find
~/.local/share/nvim/site/pack/foo/opt/foodebug/plugin/debugger.vim and source
it.

This could be done if some conditions are met.  For example, depending on
whether Nvim supports a feature or a dependency is missing.

You can also load an optional plugin at startup, by putting this command in
your config: 
        :packadd! foodebug
The extra "!" is so that the plugin isn't loaded if Nvim was started with
--noplugin.

It is perfectly normal for a package to only have files in the "opt"
directory.  You then need to load each plugin when you want to use it.


Where to put what 

Since color schemes, loaded with :colorscheme, are found below
"pack/*/start" and "pack/*/opt", you could put them anywhere.  We recommend
you put them below "pack/*/opt", for example
"~/.config/nvim/pack/mycolors/opt/dark/colors/very_dark.vim".

Filetype plugins should go under "pack/*/start", so that they are always
found.  Unless you have more than one plugin for a file type and want to
select which one to load with :packadd.  E.g. depending on the compiler
version: 
        if foo_compiler_version > 34
          packadd foo_new
        else
          packadd foo_old
        endif

The "after" directory is most likely not useful in a package.  It's not
disallowed though.

==============================================================================
Creating Vim packages                                   package-create

This assumes you write one or more plugins that you distribute as a package.

If you have two unrelated plugins you would use two packages, so that Vim
users can choose what they include or not.  Or you can decide to use one
package with optional plugins, and tell the user to add the preferred ones with
:packadd.

Decide how you want to distribute the package.  You can create an archive or
you could use a repository.  An archive can be used by more users, but is a
bit harder to update to a new version.  A repository can usually be kept
up-to-date easily, but it requires a program like "git" to be available.
You can do both, github can automatically create an archive for a release.

Your directory layout would be like this:
   start/foobar/plugin/foo.vim          " always loaded, defines commands
   start/foobar/plugin/bar.vim          " always loaded, defines commands
   start/foobar/autoload/foo.vim        " loaded when foo command used
   start/foobar/doc/foo.txt             " help for foo.vim
   start/foobar/doc/tags                " help tags
   opt/fooextra/plugin/extra.vim        " optional plugin, defines commands
   opt/fooextra/autoload/extra.vim      " loaded when extra command used
   opt/fooextra/doc/extra.txt           " help for extra.vim
   opt/fooextra/doc/tags                " help tags

This allows for the user to do: 
        mkdir ~/.local/share/nvim/site/pack
        cd ~/.local/share/nvim/site/pack
        git clone https://github.com/you/foobar.git myfoobar

Here "myfoobar" is a name that the user can choose, the only condition is that
it differs from other packages.

In your documentation you explain what the plugins do, and tell the user how
to load the optional plugin: 
        :packadd! fooextra

You could add this packadd command in one of your plugins, to be executed when
the optional plugin is needed.

Run the :helptags command to generate the doc/tags file.  Including this
generated file in the package means that the user can drop the package in the
pack directory and the help command works right away.  Don't forget to re-run
the command after changing the plugin help: 
        :helptags path/start/foobar/doc
        :helptags path/opt/fooextra/doc


Dependencies between plugins 
                                                        packload-two-steps
Suppose you have two plugins that depend on the same functionality. You can
put the common functionality in an autoload directory, so that it will be
found automatically.  Your package would have these files:

        pack/foo/start/one/plugin/one.vim  
                call foolib#getit()
       pack/foo/start/two/plugin/two.vim 
                call foolib#getit()
       pack/foo/start/lib/autoload/foolib.vim 
                func foolib#getit()

This works, because start packages will be searchd for autoload files, when
sourcing the plugins.

==============================================================================
Debugging scripts                                       debug-scripts

Besides the obvious messages that you can add to your scripts to find out what
they are doing, Vim offers a debug mode.  This allows you to step through a
sourced file or user function and set breakpoints.

NOTE: The debugging mode is far from perfect.  Debugging will have side
effects on how Vim works.  You cannot use it to debug everything.  For
example, the display is messed up by the debugging messages.

An alternative to debug mode is setting the 'verbose' option.  With a bigger
number it will give more verbose messages about what Vim is doing.


STARTING DEBUG MODE                                             debug-mode

To enter debugging mode use one of these methods:
1. Start Vim with the -D argument: 
        vim -D file.txt
  Debugging will start as soon as the first vimrc file is sourced.  This is
   useful to find out what is happening when Vim is starting up.  A side
   effect is that Vim will switch the terminal mode before initialisations
   have finished, with unpredictable results.
   For a GUI-only version (Windows) the debugging will start as
   soon as the GUI window has been opened.  To make this happen early, add a
   ":gui" command in the vimrc file.
                                                                :debug
2. Run a command with ":debug" prepended.  Debugging will only be done while
   this command executes.  Useful for debugging a specific script or user
   function.  And for scripts and functions used by autocommands.  Example: 
        :debug edit test.txt.gz

3. Set a breakpoint in a sourced file or user function.  You could do this in
   the command line: 
        vim -c "breakadd file */explorer.vim" .
  This will run Vim and stop in the first line of the "explorer.vim" script.
   Breakpoints can also be set while in debugging mode.

In debugging mode every executed command is displayed before it is executed.
Comment lines, empty lines and lines that are not executed are skipped.  When
a line contains two commands, separated by "|", each command will be displayed
separately.


DEBUG MODE

Once in debugging mode, the usual Ex commands can be used.  For example, to
inspect the value of a variable: 
        echo idx
When inside a user function, this will print the value of the local variable
"idx".  Prepend "g:" to get the value of a global variable: 
        echo g:idx
All commands are executed in the context of the current function or script.
You can also set options, for example setting or resetting 'verbose' will show
what happens, but you might want to set it just before executing the lines you
are interested in: 
        :set verbose=20

Commands that require updating the screen should be avoided, because their
effect won't be noticed until after leaving debug mode.  For example: 
        :help
won't be very helpful.

There is a separate command-line history for debug mode.

The line number for a function line is relative to the start of the function.
If you have trouble figuring out where you are, edit the file that defines
the function in another Vim, search for the start of the function and do
"99j".  Replace "99" with the line number.

Additionally, these commands can be used:
                                                        >cont
        cont            Continue execution until the next breakpoint is hit.
                                                        >quit
        quit            Abort execution.  This is like using CTRL-C, some
                        things might still be executed, doesn't abort
                        everything.  Still stops at the next breakpoint.
                                                        >next
        next            Execute the command and come back to debug mode when
                        it's finished.  This steps over user function calls
                        and sourced files.
                                                        >step
        step            Execute the command and come back to debug mode for
                        the next command.  This steps into called user
                        functions and sourced files.
                                                        >interrupt
        interrupt       This is like using CTRL-C, but unlike ">quit" comes
                        back to debug mode for the next command that is
                        executed.  Useful for testing :finally and :catch
                        on interrupt exceptions.
                                                        >finish
        finish          Finish the current script or user function and come
                        back to debug mode for the command after the one that
                        sourced or called it.
                                                        >bt
                                                        >backtrace
                                                        >where
        backtrace       Show the call stacktrace for current debugging session.
        bt
        where
                                                        >frame
        frame N         Goes to N backtrace level. + and - signs make movement
                        relative.  E.g., ":frame +3" goes three frames up.
                                                        >up
        up              Goes one level up from call stacktrace.
                                                        >down
        down            Goes one level down from call stacktrace.

About the additional commands in debug mode:
- There is no command-line completion for them, you get the completion for the
  normal Ex commands only.
- You can shorten them, up to a single character, unless more than one command
  starts with the same letter.  "f" stands for "finish", use "fr" for "frame".
- Hitting <CR> will repeat the previous one.  When doing another command, this
  is reset (because it's not clear what you want to repeat).
- When you want to use the Ex command with the same name, prepend a colon:
  ":cont", ":next", ":finish" (or shorter).

The backtrace shows the hierarchy of function calls, e.g.:
        >bt 
          3 function One[3] 
          2 Two[3] 
        ->1 Three[3] 
          0 Four 
        line 1: let four = 4 

The "->" points to the current frame.  Use "up", "down" and "frame N" to
select another frame.

In the current frame you can evaluate the local function variables.  There is
no way to see the command at the current line yet.


DEFINING BREAKPOINTS
                                                        :breaka :breakadd
:breaka[dd] func [lnum] {name}
                Set a breakpoint in a function.  Example: 
                        :breakadd func Explore
               Doesn't check for a valid function name, thus the breakpoint
                can be set before the function is defined.

:breaka[dd] file [lnum] {name}
                Set a breakpoint in a sourced file.  Example: 
                        :breakadd file 43 init.vim

:breaka[dd] here
                Set a breakpoint in the current line of the current file.
                Like doing: 
                        :breakadd file <cursor-line> <current-file>
               Note that this only works for commands that are executed when
                sourcing the file, not for a function defined in that file.

:breaka[dd] expr {expression}
                Sets a breakpoint, that will break whenever the {expression}
                evaluates to a different value. Example: 
                        :breakadd expr g:lnum
               Will break, whenever the global variable lnum changes.

                Errors in evaluation are suppressed, you can use the name of a
                variable that does not exist yet.  This also means you will
                not notice anything if the expression has a mistake.

                Note if you watch a script-variable this will break
                when switching scripts, since the script variable is only
                valid in the script where it has been defined and if that
                script is called from several other scripts, this will stop
                whenever that particular variable will become visible or
                inaccessible again.

The [lnum] is the line number of the breakpoint.  Vim will stop at or after
this line.  When omitted line 1 is used.

                                                        :debug-name
{name} is a pattern that is matched with the file or function name.  The
pattern is like what is used for autocommands.  There must be a full match (as
if the pattern starts with "^" and ends in "$").  A "*" matches any sequence
of characters.  'ignorecase' is not used, but "\c" can be used in the pattern
to ignore case /\c.  Don't include the () for the function name!

The match for sourced scripts is done against the full file name.  If no path
is specified the current directory is used.  Examples: 
        breakadd file explorer.vim
matches "explorer.vim" in the current directory. 
        breakadd file *explorer.vim
matches ".../plugin/explorer.vim", ".../plugin/iexplorer.vim", etc. 
        breakadd file */explorer.vim
matches ".../plugin/explorer.vim" and "explorer.vim" in any other directory.

The match for functions is done against the name as it's shown in the output
of ":function".  For local functions this means that something like "<SNR>99_"
is prepended.

Note that functions are first loaded and later executed.  When they are loaded
the "file" breakpoints are checked, when they are executed the "func"
breakpoints.


DELETING BREAKPOINTS
                                                :breakd :breakdel E161
:breakd[el] {nr}
                Delete breakpoint {nr}.  Use :breaklist to see the number of
                each breakpoint.

:breakd[el] *
                Delete all breakpoints.

:breakd[el] func [lnum] {name}
                Delete a breakpoint in a function.

:breakd[el] file [lnum] {name}
                Delete a breakpoint in a sourced file.

:breakd[el] here
                Delete a breakpoint at the current line of the current file.

When [lnum] is omitted, the first breakpoint in the function or file is
deleted.
The {name} must be exactly the same as what was typed for the ":breakadd"
command.  "explorer", "*explorer.vim" and "*explorer*" are different.


LISTING BREAKPOINTS
                                                        :breakl :breaklist
:breakl[ist]
                List all breakpoints.


OBSCURE

                                                :debugg :debuggreedy
:debugg[reedy]
                Read debug mode commands from the normal input stream, instead
                of getting them directly from the user.  Only useful for test
                scripts.  Example: 
                  echo 'q^Mq' | vim -e -s -c debuggreedy -c 'breakadd file script.vim' -S script.vim

:0debugg[reedy]
                Undo ":debuggreedy": get debug mode commands directly from the
                user, don't use typeahead for debug commands.

==============================================================================
Profiling                                               profile profiling

Profiling means that Vim measures the time that is spent on executing
functions and/or scripts.

You can also use the reltime() function to measure time.

For profiling syntax highlighting see :syntime.

For example, to profile the one_script.vim script file: 
        :profile start /tmp/one_script_profile
        :profile file one_script.vim
        :source one_script.vim
        :exit


:prof[ile] start {fname}                        :prof :profile E750
                Start profiling, write the output in {fname} upon exit.
                "~/" and environment variables in {fname} will be expanded.
                If {fname} already exists it will be silently overwritten.
                The variable v:profiling is set to one.

:prof[ile] stop
                Write the logfile and stop profiling.

:prof[ile] pause
                Don't profile until the following ":profile continue".  Can be
                used when doing something that should not be counted (e.g., an
                external command).  Does not nest.

:prof[ile] continue
                Continue profiling after ":profile pause".

:prof[ile] func {pattern}
                Profile function that matches the pattern {pattern}.
                See :debug-name for how {pattern} is used.

:prof[ile][!] file {pattern}
                Profile script file that matches the pattern {pattern}.
                See :debug-name for how {pattern} is used.
                This only profiles the script itself, not the functions
                defined in it.
                When the [!] is added then all functions defined in the script
                will also be profiled.
                Note that profiling only starts when the script is loaded
                after this command.  A :profile command in the script itself
                won't work.

:prof[ile] dump
                Don't wait until exiting Vim and write the current state of
                profiling to the log immediately.

:profd[el] ...                                          :profd :profdel
                Stop profiling for the arguments specified. See :breakdel
                for the arguments.


You must always start with a ":profile start fname" command.  The resulting
file is written when Vim exits.  Here is an example of the output, with line
numbers prepended for the explanation:

  1 FUNCTION  Test2() 
  2 Called 1 time 
  3 Total time:   0.155251 
  4  Self time:   0.002006 
  5  
  6 count  total (s)   self (s) 
  7     9              0.000096   for i in range(8) 
  8     8   0.153655   0.000410     call Test3() 
  9     8              0.000070   endfor 
 10                               " Ask a question 
 11     1              0.001341   echo input("give me an answer: ") 

The header (lines 1-4) gives the time for the whole function.  The "Total"
time is the time passed while the function was executing.  The "Self" time is
the "Total" time reduced by time spent in:
- other user defined functions
- sourced scripts
- executed autocommands
- external (shell) commands

Lines 7-11 show the time spent in each executed line.  Lines that are not
executed do not count.  Thus a comment line is never counted.

The Count column shows how many times a line was executed.  Note that the
"for" command in line 7 is executed one more time as the following lines.
That is because the line is also executed to detect the end of the loop.

The time Vim spends waiting for user input isn't counted at all.  Thus how
long you take to respond to the input() prompt is irrelevant.

Profiling should give a good indication of where time is spent, but keep in
mind there are various things that may clobber the results:

- Real elapsed time is measured, if other processes are busy they may cause
  delays at unpredictable moments.  You may want to run the profiling several
  times and use the lowest results.

- If you have several commands in one line you only get one time.  Split the
  line to see the time for the individual commands.

- The time of the lines added up is mostly less than the time of the whole
  function.  There is some overhead in between.

- Functions that are deleted before Vim exits will not produce profiling
  information.  You can check the v:profiling variable if needed: 
        :if !v:profiling
        :   delfunc MyFunc
        :endif

- Profiling may give weird results on multi-processor systems, when sleep
  mode kicks in or the processor frequency is reduced to save power.

- The "self" time is wrong when a function is used recursively.

==============================================================================
Context                                                 Context context

The editor state is represented by the Context concept. This includes things
like the current jumplist, values of registers, and more, described below.

                                                        context-types
The following Context items are supported:
        "jumps"         jumplist
        "regs"          registers
        "bufs"          buffer-list
        "gvars"         global-variables
        "sfuncs"        script-local functions
        "funcs"         global and script-local functions

                                                        context-dict
Context objects are dictionaries with the following key-value pairs:
- "jumps", "regs", "bufs", "gvars":
      readfile()-style List representation of corresponding msgpack
      objects (see msgpackdump() and msgpackparse()).
- "funcs" (includes script-local functions as well):
      List of :function definitions.

                                                        context-stack
An initially-empty internal Context stack is maintained by the ctx-family
functions (see ctx-functions).


 vim:tw=78:ts=8:noet:ft=help:norl:


Quick links: help overview · quick reference · user manual toc · reference manual toc